
1222 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 40, NO. 4, APRIL 2022

Optimization of Grant-Free NOMA With Multiple
Configured-Grants for mURLLC

Yan Liu , Member, IEEE, Yansha Deng , Member, IEEE, Maged Elkashlan , Senior Member, IEEE,

Arumugam Nallanathan , Fellow, IEEE, and George K. Karagiannidis , Fellow, IEEE

Abstract— Massive Ultra-Reliable and Low-Latency Commu-
nications (mURLLC), which integrates URLLC with massive
access, is emerging as a new and important service class in the
next generation (6G) for time-sensitive traffics and has recently
received tremendous research attention. However, realizing effi-
cient, delay-bounded, and reliable communications for a massive
number of user equipments (UEs) in mURLLC, is extremely
challenging as it needs to simultaneously take into account the
latency, reliability, and massive access requirements. To support
these requirements, the third generation partnership project
(3GPP) has introduced enhanced grant-free (GF) transmission in
the uplink (UL), with multiple active configured-grants (CGs) for
URLLC UEs. With multiple CGs (MCG) for UL, UE can choose
any of these grants as soon as the data arrives. In addition,
non-orthogonal multiple access (NOMA) has been proposed to
synergize with GF transmission to mitigate the serious trans-
mission delay and network congestion problems. In this paper,
we develop a novel learning framework for MCG-GF-NOMA
systems with bursty traffic. We first design the MCG-GF-NOMA
model by characterizing each CG using the parameters: the
number of contention-transmission units (CTUs), the starting slot
of each CG within a subframe, and the number of repetitions
of each CG. Based on the model, the latency and reliability
performances are characterized. We then formulate the MCG-
GF-NOMA resources configuration problem taking into account
three constraints. Finally, we propose a Cooperative Multi-
Agent based Double Deep Q-Network (CMA-DDQN) algorithm
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to balance the allocations of the channel resources among MCGs
so as to maximize the number of successful transmissions under
the latency constraint. Our results show that the MCG-GF-
NOMA framework can simultaneously improve the low latency
and high reliability performances in massive URLLC.

Index Terms— Multiple configured-grants, massive URLLC,
NOMA, deep reinforcement learning, resource configuration.

I. INTRODUCTION

IN THE standardization of the Fifth Generation (5G) New
Radio (NR), three communication service categories were

defined to address the requirements of novel Internet of
Things (IoT) use cases [1]. Among them, the Ultra-Reliable
and Low-Latency Communications (URLLC) is one of the
most challenging services with stringent low latency and
high reliability requirements, i.e., in the Third Generation
Partnership Project (3GPP) standard [2], a general URLLC
requirement is 1−10−5 target reliability within 1 ms user plane
latency.1 Considering the explosive increase in the number
of IoT devices, it is essential to improve the access perfor-
mance in networks for accommodating massive access with
various requirements. Integrating URLLC with massive access,
massive URLLC (mURLLC) wireless networks are able to
realize efficient, delay-bounded, and reliable communications
for a massive number of IoT devices [3]. The mURLLC
is becoming a new and important service class in the next
generation (6G) for the time-sensitive traffics and has received
tremendous research attention [4]. However, addressing the
need in mURLLC is fundamentally challenging as it needs to
simultaneously guarantee the latency, reliability, and massive
access requirements.

To support these requirements, several new features such as
configured-grant (CG) transmission with automatic repetitions
[5], user-equipment (UE) multiplexing [6], and multiple active
CGs for URLLC UEs [7] were standardized by the 3GPP.

1) Grant-Free NOMA: To reduce the latency in URLLC,
the grant-free (GF) (a.k.a. configured-grant (CG)) transmission
is proposed for 5G NR in 3GPP Release 15 [5] as an
alternative for traditional grant-based (GB) (a.k.a. dynamic-
grant (DG)) in Long Term Evolution (LTE). In NR GF
transmission, the UE is allowed to transmit data to the Base

1User plane latency is defined as the one-way radio latency from the process-
ing of the packet at the transmitter to when the packet has been received
successfully and includes the transmission processing time, transmission time
and reception processing time.
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Fig. 1. Multiple CGs (MCG) configurations for K-repetition GF transmission,
T: packet transmission, D: DL processing, F: ACK/NACK feedback, and
U: UL processing.

Station (BS) in an arrive-and-go manner without schedul-
ing request (SR) and uplink (UL) resource grant (RG) to
reduce latency. To increase the reliability in URLLC, the
K-repetition GF transmission has been proposed by 3GPP,
where a pre-defined number of consecutive replicas of the
same packet are transmitted in the consecutive time slots
[5]. More details about K-repetition GF transmission can be
found in [8]. To mitigate the serious transmission delay and
network congestion problems caused by collision events in
contention-based GF transmission and enhance the uplink
connectivity, non-orthogonal multiple access (NOMA) has
been proposed to synergize with GF transmission [6], [9],
where GF-NOMA allows multiple UEs to transmit over the
same physical resource by employing user-specific signature
patterns (e.g, codebook, pilot sequence, mapping pattern,
demodulation reference signal, power, etc.) [10].

2) Multiple Configured-Grants for Grant-Free NOMA:
3GPP proposed multiple CGs (MCG) transmission in Release
16 [7] to support different starting offsets of the resources
with respect to UL packet arrival time as shown in Fig. 1.
On the one hand, there is a chance of reducing the latency
in cases where the data of an UE arrives (i.e., UE is active)
after the starting slot offset of the CG 1 (UE 2, 3, and 4 in
Fig. 1). As illustrated in Fig. 1, UE 2 can transmit using
the CG 2 without waiting for the CG period in the next
subframe as in the single CG (SCG). On the other hand, there
is a chance of mitigating the collision events when multiple
UEs are active and waiting for the CG period to transmit
the packet. For example, UE 2 and UE 3 can transmit using
different CG resources without collision as shown in Fig. 1.
Multiple CGs also support different resource sizes, repetitions,
and periodicity, to suit different data requirements, respectively
[11], [12].

A. Related Works

Scanning the open literature, to the best of our knowledge,
most works focused on the analysis or optimization of sin-
gle configured-grant GF-NOMA (SCG-GF-NOMA) transmis-
sions.

In terms of analysis, a GF-NOMA strategy was proposed
in [13], in which active devices transmitted data over a

randomly selected available channel. In order to allow the
receiver decode successfully, the transmitted data was encoded
with rateless code. In [14], a new GF-NOMA analytical frame-
work was proposed and the expressions for outage probability
and throughput for GF-NOMA transmissions were derived,
by treating collisions as interference through successive joint
decoding or successive interference cancellation (SIC). In [15],
a semi-GF scheme has been proposed, where the dedicated GB
access was provided for one user while GF access was used
by other users.

In terms of optimization, several studies have applied
deep reinforcement learning (DRL) to optimize the SCG-
GF-NOMA networks. DRL can obtain better resource alloca-
tion with near-optimal resource access probability distribution
to improve the SCG-GF-NOMA transmission [16]. In [16],
the authors designed users and sub-channel clusters in a
region to reduce collisions of the GF-NOMA system. The
formulated long-term cluster throughput problem is solved via
DRL algorithm for optimal sub-channel and power allocation.
In [17], the authors introduced power-domain NOMA to
further improve network throughput and defined a new reward
that enabled only one acknowledgement bit returning to the
device from the BS in each time slot. In [18], the authors
proposed two distributed Q-learning aided uplink GF-NOMA
schemes to maximize the number of accessible devices, where
the bursty traffic of massive Machine Type Communications
(mMTC) devices is carefully considered.

Different from [13]–[18], we aim to first design a
novel framework about multiple CGs GF-NOMA (MCG-GF-
NOMA) networks and optimize the long-term successfully
served UEs under the latency constraint based on this frame-
work for mURLLC service.

B. Motivations and Contributions

As mentioned before, research on the MCG-GF-NOMA
networks to support mURLLC is fundamental and essential,
which is an untreated and challenging problem. To cope with
it, accurately modeling, analyzing, and optimizing the MCG-
GF-NOMA resource is fundamentally important, but the inter-
play between latency and reliability brings extra complexity.
In addition, in the GF-NOMA scheme, the data is transmitted
along with the pilot randomly, which is unknown at the BS
and can lead to new research problems. The blind detection
of active UEs is needed due to that the set of active users
is unknown to the BS, which also brings extra challenges.
The MCG-GF-NOMA system optimization can hardly be
solved via the traditional convex optimization method, due
to the complex communication environment with the lack of
tractable mathematical formulations, whereas Reinforcement
Learning (RL), can be a potential alternative approach, due
to that it solely relies on the self-learning of the environment
interaction, without the need to derive explicit optimization
solutions based on a complex mathematical model. In this
paper, we address the following fundamental questions: 1)
how to design the MCG-GF-NOMA network; 2) how to
quantify the URLLC reliability and latency performances
in the MCG-GF-NOMA network; 3) how to formulate the
MCG-GF-NOMA resources configuration problem taking into
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Fig. 2. 5G NR frame structure for numerology: (a) 15 kHz with 14 symbols/slot, (b) 60 kHz with 7 symbols/mini-slot.

account the reliability and latency; and 4) how to balance the
allocations of channel resources among multiple CGs so as to
provide maximum success transmissions in mURLLC scenario
with bursty traffic. The main contributions of this paper are as
follows:

• We propose a novel MCG-GF-NOMA learning frame-
work for attaining the long-term successfully served UEs
under the latency constraint in mURLLC service, where
the latency and reliability performances are characterized
and analyzed for each CG. In this framework, we practi-
cally simulate the random traffics, the resource config-
uration, the collision detection, and the data decoding
procedures.

• We design a MCG-GF-NOMA system, where we charac-
terize each CG using the parameters including the number
of contention-transmission units (CTUs), the starting slot
of each CG within a subframe, and the number of
repetitions of each CG. We then formulate the MCG-
GF-NOMA resource configuration problem taking into
account three constraints: 1) the CTU resource constraint
is set to compare the MCG-GF-NOMA scheme with the
SCG-GF-NOMA scheme; 2) the latency constraint is set
to satisfy the latency requirement; and 3) the starting
slot constraint is set to support various UL packet arrival
times.

• We propose a Cooperative Multi-Agent learning tech-
nique based Double Deep Q-Network (CMA-DDQN)
algorithm to balance the allocations of resources among
MCGs so as to maximize the number of successful

transmissions under the latency constraint, which breaks
down the selection of high-dimensional parameters into
multiple parallel sub-tasks with a number of DDQN
agents cooperatively being trained to produce each para-
meter.

• Our results show that the MCG-GF-NOMA learning
framework can improve the low latency and high relia-
bility performances in a massive URLLC scenario. First,
the number of successfully served UEs in the MCG-GF-
NOMA system is up to four times more than that in the
SCG-GF-NOMA system, and the latency of successfully
served UEs in the MCG-GF-NOMA system is circa half
of that in the SCG-GF-NOMA system. Second, the MCG-
GF-NOMA learning framework can also increase the
CTU resource utilization efficiency compared to the SCG-
GF-NOMA system.

C. Organization

The remainder of this paper is structured as follows. Section
II illustrates the system model of MCG-GF-NOMA system.
Section III describes the problem analysis and formulation.
Section IV elaborates on the proposed CMA-DDQN algorithm
for solving the formulated problem. The simulation results
are illustrated in Section V. Finally, Section VI concludes the
main concept, insights and results of this paper.

II. SYSTEM MODEL

We consider a single-cell uplink wireless network with a
coverage radius of R. Particularly, a BS is located at the center
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of the cell, and a number of NUE static UEs are randomly
distributed around the BS in an area of the plane R2, where the
UEs remain spatially static once deployed. The BS is unaware
of the status of these UEs, hence no uplink channel resource
is scheduled to them in advance. To capture the effects of
the physical radio, we consider the standard power-law path-
loss model with the path-loss attenuation r−η , where r is
the Euclidean distance between the UE and the BS and η
is the path-loss attenuation factor. In addition, we consider
a Rayleigh flat-fading environment, where the channel power
gains h are exponentially distributed (i.i.d.) random variables
with unit mean.

A. 5G NR Frame Structure and Numerologies

5G NR defines five numerologies based on subcarrier spac-
ing (SCS) Δf = 2μ × 15 kHz, where μ = 0, 1, 2, 3, 4 is the
numerology factor [19], instead of a single value of 15 kHz
in LTE. This feature reduces transmission time by decreasing
the slot length as shown in Fig. 2. As depicted in Fig. 2, the
per frame duration in NR is still 10 ms, and the same as in
LTE. One frame consists of 10 subframes and each with 1 ms
duration. With the increased SCS, i.e., a large value of μ, the
slot duration reduces according to 1/2μ ms. To further reduce
the latency by shortening transmission time interval (TTI),
in 5G NR, a TTI can be a mini-slot of 2, 4, or 7 Orthogonal
Frequency Division Multiplexing (OFDM) symbols instead
of 14 OFDM symbols per TTI in LTE (see Fig. 2), and a
transmission can start at the beginning of a mini-slot [19].
Mini-slot durations will depend on the SCS (μ) and on the
number of OFDM symbols included in a slot (Nsym), i.e.,

TTI = Nsym/2μ/14 (ms). (1)

Thus, one NR subframe may have one (for μ = 0) or multiple
slots depending on the value of the numerology factor μ, i.e.,

Nslot = 1/TTI = 2μ × 14/Nsym. (2)

B. Inter-Arrival Traffic

The small packets for each UE are generated according
to random inter-arrival processes over the TTIs, which are
Markovian as defined in [20], [21] and unknown to BS.
We consider a bursty traffic process, which occurs when a
large number of UEs attempt to access the same network
simultaneously during a short period of time [22]. This is
especially observable when the number of UEs could be
huge. 3GPP recommends applying a Beta distribution based
arrival process to model the arrival intensity during bursty
traffic arrivals in [21]. Considering the nature of slotted-Aloha,
the newly activated devices can only execute transmission at
the beginning of the closest CG. This means that the UEs
transmitting in a CGi period come from those who received
a packet within the interval between the last period (τ i−1,
τ i). The traffic instantaneous rate in packets in a period is
described by a function p(τ), so that the packets arrival rate
in the ith CG period is given by

Ai =
∫ τi

τi−1

p(τ)dτ. (3)

Fig. 3. An illustration of CTU in a time-frequency space.

Each UE would be activated at any time τ , according to a
time limited Beta probability density function (PDF) as [21,
Section 6.1.1]

p(τ) =
τα−1(T − τ)β−1

T α+β−1Beta(α, β)
, (4)

where T is the total time duration of the bursty traffic and
Beta(α, β) =

∫ 1

0
τα−1(1− τ)β−1dτ is the Beta function with

the constant parameters α and β [23].

C. Grant-Free NOMA Model

We focus on the UEs that are connected to the network in
a GF manner. In order to deal with the resource constraint
problem caused by orthogonal resource allocation, NOMA is
introduced to increase the number of accessible devices in this
paper. In the GF-NOMA, the smallest transmission unit that
a UE can compete for is called a contention transmission unit
(CTU). A CTU may comprise of a MA physical resource and a
MA signature [10], [24], [25]. The MA physical resources rep-
resent a set of time-frequency resource blocks (RBs) and the
MA signatures represent a set of pilot sequences for channel
estimation and/or UE activity detection, and a set of codebooks
for robust data transmission and interference whitening, etc.
Without loss of generality, we consider that there are L
different pilot sequences defined over one time-frequency RB
as shown in Fig. 3. Each pilot sequence l is made unique
to a specific codebook and acts as the UE’s signature2 [6],
[14]. There are obviously NCTU = F × L unique CTUs
over F time-frequency RBs configured by the BS in each CG
configuration period. Each UE randomly chooses one CTU
from the pool to transmit in this period. Unlike orthogonal
resource allocation (i.e., each time-frequency resource can
only be used by one UE), NOMA allows multiple UEs with
different codebooks and pilot sequences to transmit over the
same time-frequency resource, thus increasing the number of
accessible UEs without expanding physical resources. How-
ever, a collision will occur when more than one UE selects
the same codebook and pilot sequence (i.e. the same CTU).

2A one-to-one mapping or a many-to-one mapping between the pilot
sequences and codebooks can be predefined. Since it has been verified in [26]
that the performance loss due to codebook collision is negligible for a real
system, we focus on the pilot sequence collision and consider the one-to-one
mapping as [14], [27].
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Fig. 4. Multiple CGs (MCG) configurations with four CGs.

D. Multiple Configured-Grants Grant-Free NOMA
(MCG-GF-NOMA) Design

We consider the MCG-GF-NOMA system as shown in
Fig. 4. The BS configures NCG UL CGs for massive URLLC
transmissions at each subframe. The UE chooses the config-
uration with the earliest starting point to transmit data. Each
CG is consist of different resources in the CTU domains, and
is associated with the following transmission parameters:

• Number of CTUs (NCTU)
• Starting slot within a subframe (Nstart)
• Number of repetitions (Nrepe)
• Number of slots in a subframe (Nslot)

Without loss of generality, we consider that all the subframe
has the same number of slots all the time, i.e., the Nslot is
the same for each CG and each subframe. Thus, for ease
of presentation, we represent each CGi in the tth subframe
by CGt

i{N t
CTU,i, N

t
start,i, N

t
repe,i}. As illustrated in Fig. 4,

CGt
1{2, 0, 4}, CGt

2{1, 1, 3}, CGt
3{3, 2, 2}, and CGt

4{2, 3, 1}
are four CGs in the tth subframe.

The main variables are summarized in Table I.

III. PROBLEM ANALYSIS AND FORMULATION

In a given subframe t, the BS preconfigured NCG CGs for
UEs to transmit their packets. The BS sends radio resource
control (RRC) (for both type 1 and type 2 CG transmission)
or downlink control information (DCI) (only for type 2 CG
transmission) to activate or release the CG configurations
[28]. As soon as the URLLC data arrives, a UE can choose
the CGt

i with the earliest starting point (i.e., the smallest

N t
start,i) to transmit data. Suppose that the UE chooses

the CGt
i{N t

CTU,i, N
t
start,i, N

t
repe,i}, then the UE randomly

chooses a CTU from N t
CTU,i available CTUs and start trans-

mits at slot N t
start,i for N t

repe,i repetitions. The BS decodes
(D) each repetition independently and the transmission is
successful when at least one repetition succeeds. After process-
ing all the received N t

repe,i repetitions, the BS transmits the
ACK/NACK feedback (F) to the UE. Considering the small
packets of URLLC traffic, we set the packet transmission time
as one TTI. The BS feedback time and the BS (UE) processing
time are also assumed to be one TTI following our previous
work [8]. The latency analysis and the reliability analysis for
the MCG-GF-NOMA are described in the following.

A. MCG-GF-NOMA Latency Analysis

In order to meet the low latency requirement for mURLLC,
we consider that the active UE can only transmit for one round
trip time (RTT). The RTT is the length time it takes for a data
packet to be sent to a destination plus the time it takes for
an acknowledgment of that packet to be received back at the
origin. According to Fig. 4, the incurred latency of the UE
using the CGt

i at the tth subframe includes two parts: the
waiting time T t

wait,i and the RTT T t
RTT,i. We obtain the RTT

of the UE using CGt
i at the tth subframe as

T t
RRT,i = N t

repe,i + 3. (5)

It should be noted that the UEs transmitting in CGt
i come

from those who received a packet after the start point of the
CGt

i−1. Thus, the waiting time is the length time from the start



LIU et al.: OPTIMIZATION OF GRANT-FREE NOMA WITH MULTIPLE CONFIGURED-GRANTS FOR mURLLC 1227

TABLE I

NOTATION TABLE

point of the CGt
i−1 to the start point of the CGt

i. We derive
the waiting time as

T t
wait,i = τ i − τ i−1, (6)

where

(τ i−1, τ i)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Nslot × (t−1)+N t
start,i−1, Nslot × (t−1) + N t

start,i),
(i > 1),
(0, 0),
(i = 1, t = 1),
(Nslot × (t−2)+N t

start,Nt−1
CG

, Nslot × (t−2)+Nslot),

(i = 1, t > 1).
(7)

According to (5), (6), and (7), we obtain the latency for CGt
i

as

T t
laten,i = T t

wait,i + T t
RRT,i

=

⎧⎪⎨
⎪⎩

N t
start,i−N t

start,i−1+N t
repe,i+3, (i>1),

N t
repe,i + 3, (i = 1, t = 1),

Nslot−N t
start,Nt−1

CG
+N t

repe,i+3, (i=1, t>1).

(8)

In order to compare the latency performance, we calculate
the average latency of the successfully served UEs in each

subframe as

T t
aver =

NCG∑
i

T t
laten,i ×N t

suc,i

NCG∑
i

N t
suc,i

, (9)

where N t
suc,i is the successfully served UEs using the CGi at

the tth subframe and is obtained in the next subsection about
reliability analysis.

B. MCG-GF-NOMA Reliability Analysis

During each RTT, if the GF-NOMA procedure fails, the
UE fails to be served and its packets will be dropped. The
GF-NOMA fails if: (i) a CTU collision occurs when two or
more UEs choose the same CTU (i.e., UE detection fails); or
(ii) the SIC decoding fails (i.e., data decoding fails).

1) CTU detection: At each RTT, each active UE transmits
its packets to the BS by randomly choosing a CTU from the
earliest CGi. The BS can detect the UEs that have chosen
different CTUs. However, if multiple UEs choose the same
CTU, the BS cannot differentiate these UEs and therefore
cannot decode the data. We categorize the CTUs from each
CGi into three types [14]:

• idle CTU: a CTU which has not been chosen by any UE;
• singleton CTU: a CTU chosen by only one UE;
• collision CTU: a CTU chosen by two or more UEs.
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After collision detection at the tth subframe for the CGi, the
BS observes the set of singleton CTUs N t

SC,i, the set of idle
CTUs N t

IC,i, and the set of collision CTUs N t
CC,i for each

CGi.
2) SIC Decoding: After detecting the UEs that have chosen

the singleton CTUs, the BS performs the SIC technique to
decode the data of these UEs. Based on the NOMA principles,
at each iterative stage of SIC, the BS first decodes the UE
with the strongest received power and then subtracted the
successfully decoded signal from the received signal (we
assume perfect SIC the same as [14]). That is to say, the
decoding order at the BS is in sequence to the received power.
It is worth noting that during the decoding, the UEs that
transmit on different RBs do not interfere with each other
due to the orthogonality, and only UEs that transmit on the
same RB cause interference. Thus, in order to characterize
the UEs transmitting with CGi on the f th RB, we represent
the N t

f,SU,i as the set of UEs that have chosen the singleton

CTUs for the CGi on the f th RB, the N t
f,SU,i =

∣∣∣N t
f,SU,i

∣∣∣ as
the number of UEs that have chosen the singleton CTUs for the
CGi on the f th RB (|·| denotes the number of elements in any
vector ·), and N t

f,CU,i as the number of UEs that have chosen
the collision CTUs using the CGi on the f th RB. We define
the received power of the sth UE in the nth repetition of the
CGi on the f th RB as

P t
s,f,i = Pht

s,f,irs
−η, (10)

where P is the transmission power, r is the Euclidean distance
between the UE and the BS, η is the path-loss attenuation
factor, h is the Rayleigh fading channel power gain from the
UE to the BS.

Suppose that the received power obeys P t
1,f,i ≥ P t

2,f,i ≥
. . . ≥ P t

Nt
f,SU,i

, the decoding order should be from the 1st UE
to the Nf,SU,ith UE. In each iterative stage of SIC decoding,
the CTU with the strongest received power is decoded by
treating the received powers of other CTUs over the same
RB as the interference. Thus, at the tth subframe, in the nth
repetition of the CGi on the f th RB, the signal-to-interference-
plus-noise ratio (SINR) of the sth stage of SIC decoding of
the sth UE is derived as

SINRt
s,f,i =

P t
s,f,i

Nt
f,SU,i∑

m=s+1
P t

m,f,i +
Nt

f,CU,i∑
n′=1

P t
n′,f,i + σ2

, (11)

where σ2 is the noise power.
Each iterative stage of SIC decoding is successful when

the SINR in that stage is larger than the SINR threshold,
i.e., SINRt

s,f,i ≥ γth. The SIC procedure stops when one
iterative stage of the SIC fails or when there are no more
signals to decode. The SIC decoding procedure for each CGi

is described in the following.

• Step 1: Start the nth repetition with the initial n = 1,
N t

f,SU,i, N t
f,SU,i and N t

f,CU,i;
• Step 2: Decode the sth UE with the initial s = 1 using

(11);

• Step 3: If the sth UE is successfully decoded, put the
decoded UE in setN t

f,suc,i(n) and go to Step 4, otherwise
go to Step 5;

• Step 4: If s ≤ N t
f,SU,i, do s = s + 1, go to Step 2,

otherwise go to Step 5;
• Step 5: SIC for the nth repetition stops;
• Step 6: If n ≤ Nrepe,i, do n = n + 1, go to Step 1,

otherwise go to the end.

Finally, the set of successfully served UEs using the CGi on
the f th RB at the tth subframe is derived as

N t
f,suc,i =

Nrepe,i⋃
n=1

(N t
f,suc,i(n)), (12)

the set of the successfully served UEs using the CGi at the
tth subframe is obtained as

N t
suc,i =

F t⋃
f=1

(N t
f,suc,i), (13)

and the set of the successfully served UEs at the tth subframe
is obtained as

N t
suc =

NCG⋃
i=1

(N t
suc,i). (14)

Then, N t
suc = |N t

suc| is the number of successfully served
UEs.

C. Problem Formulation

In this work, we aim to tackle the problem of optimizing
the MCG-GF-NOMA configuration defined by parameters
CGt

i{N t
CTU,i, N

t
start,i, N

t
repe,i} for each subframe t. At each

subframe t, the BS aims at maximizing a long-term objective
Rt related to the average number of UEs that have successfully
send data with respect to the stochastic policy π that maps the
current observation history Ot to the probabilities of selecting
each possible parameters in At. This optimization problem
(P1) can be formulated as:

(P1 :) max
π(At|Ot)

∞∑
k=t

γk−t
Eπ[Nk

suc] (15)

s.t.

NCG∑
i=1

N t
CTU,i = N t

CTU,SCG, (16)

N t
start,i + N t

repe,i + 3 = Nslot, ∀i ∈ [1, NCG],
(17)

N t
start,i <N t

start,i+1 <Nslot−3, ∀i∈ [1, NCG],
(18)

where γ ∈ [0, 1) is the discount factor for the performance
accrued in the future subframes, and γ = 0 means that the
agent just concerns the immediate reward. The CTU resource
constraint in (16) is set to compare with the SCG-GF-NOMA
scheme, where N t

CTU,SCG is the configured CTU numbers
for the SCG-GF-NOMA. That is to say, the MCG-GF-NOMA
configuration uses the same frequency resources but overlap in
time and have different starting points so they do not require
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the additional resources compared to the conventional SCG-
GF-NOMA scheme. The latency constraint in (17) is set to
satisfy the latency requirement. That is to say, the transmission
must be completed in one subframe (1 ms). Otherwise, the
packet will be dropped. The starting slot constraint in (18) is
set to support different UL packet arrival times.

All these constraints yield a mixed-integer non-convex
problem and, in general, there is no standard method for
solving this kind of problem efficiently. Additionally, since
the dynamics of the MCG-GF-NOMA system is Markovian
over the continuous subframes, this is a Partially Observable
Markov Decision Process (POMDP) problem that is gen-
erally intractable for the conventional convex optimization
algorithms due to their limitation in overcoming the dynamic
in the environment. Here, partial observation refers to that
a BS can not fully know all the information of the com-
munication environment, including, but not limited to, the
channel conditions, the random collision process, and the
traffic statistics. The search space is expanded as the number
of parameters increases, which also makes the conventional
gradient-based optimization techniques unsuitable. The deep
reinforcement learning (DRL) is regarded as powerful tool
to address complex dynamic control problems in POMDP.
The reasons in choosing DQN are that: 1) the Deep Neural
Network (DNN) function approximation is able to deal with
several kinds of partially observable problems [29], [30]; 2)
DQN has the potential to accurately approximate the desired
value function while addressing a problem with very large
state spaces; 3) DQN is with high scalability, where the scale
of its value function can be easily fit to a more complicated
problem; 4) a variety of libraries have been established to facil-
itate building DNN architectures and accelerate experiments,
such as TensorFlow, Pytorch, Theano, Keras, and etc.. The
goal of deploying and designing the MCG-GF-NOMA is for
maximizing the long-term benefits, which falls into the field
of the DRL algorithm for the reason that this algorithm can
monitor the reward resulting from its actions and incorporate
farsighted system evolution instead of myopically optimizing
current benefits.

IV. PROPOSED OPTIMIZATION SOLUTION

In this section, we propose a Cooperative Multi-Agent
Double Deep Q-Network (CMA-DDQN) approach to tackle
the problem (P1), which breaks down the selection in
high-dimensional action space into multiple parallel sub-tasks.

The aim of the CMA-DDQN model is to enable the agent
to carry out the optimal actions to maximize the long-term
sum reward. The principle of the CMA-DDQN model is
maximizing the long-term sum reward instead of aiming
for maximizing the reward at a particular subframe. Thus,
in the CMA-DDQN model, the selected action may not be
the optimal choice for the current subframe, but the opti-
mal choice for pursing long-term benefits. In this paper, the
parameters configuration of MCG-GF-NOMA is considered as
discrete, so the value-based RL algorithm is invoked. The state
space, action space, reward function design of the proposed
CMA-DDQN based algorithm are specified.

A. Reinforcement Learning Framework

To optimize the number of successfully served UEs in
MCG-GF-NOMA system, we consider a RL-agent deployed
at the BS to interact with the environment in order to choose
appropriate actions progressively leading to the optimization
goal. We define S ∈ S, A ∈ A, and R ∈ R as any state, action,
and reward from their corresponding sets, respectively. At the
beginning of each subframe t, the RL-agent first observes the
current state St corresponding to a set of previous observations
U t′ for all prior subframes (t� = 1, . . . , t− 1) in order to select
an specific action At ∈ A(St). After carrying out the action
At, the RL-agent transits to a new observed state St+1 and
obtains a corresponding reward Rt+1 as the feedback from the
environment, which is designed based on the new observed
state St+1 and guides the agent to achieve the optimization
goal. After enough iterations, the BS can learn the optimal
policy that maximizes the long-term rewards.

At each subframe t, a Q-value is calculated based on the
current state and previously taken actions. Thus, the state,
action and Q-value is stored in a Q-function, Q(St, At), which
determines the decision policy π. The Q-value and Q-function
are updated based on the current state, previously taken actions
and the received reward by following the principle

Q(St, At) = Q(St, At) + λ[Rt+1

+ γ max
A∈A

Q(St+1, A)−Q(St, At)], (19)

The detailed descriptions of the state, action and reward of
problem (P1) are introduced as follows.

1) States in the Q-Learning Model: In terms of the state
space of the proposed CMA-DDQN model, it contains five
parts: the number of the collision CTUs N t′

CC, the number of
the idle CTUs N t′

IC, the number of the singleton CTUs N t′
SC,

the number of UEs that have been successfully detected and
decoded under the latency constraint N t′

suc, and the number of
UEs that have been successfully detected but not successfully
decoded N t′

fdec.
2) Actions in the Q-Learning Model: Practically, the

MCG-GF-NOMA system is always configured with multi-
ple CGs to serve UEs with random traffic. In this section,
we study the problem (P1) of optimizing the resource con-
figuration for multiple CGs each with parameters CGt =
{N t

CTU,i, N
t
start,i, N

t
repe,i}NCG

i=1 , where N t
CTU,i is chosen from

the set of the number of the CTUs NCTU, N t
start,i is chosen

from the set of the value of the repetitions Nstart, and N t
repe,i

is chosen from the set of the value of the repetitions Nrepe.
This joint optimization by configuring each parameter in each
CG can improve the overall data transmission performance.
However, considering multiple CGs results in the increment of
observations space, which exponentially increases the size of
state space. For example, the number of available actions cor-
responds to the possible combinations of configurations |A| =
NCG∏
i=1

(|NCTU,i| × |Nstart,i| × |Nrepe,i|). To train Q-agent with

this expansion, the requirements of time and computational
resources greatly increase. In view of this, we revise the
configured parameters by considering the constraints from (16)
to (18).
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Algorithm 1: Generate the Set of Actions for the Number
of CTUs Configuration
Input: Set of number of CTUs NCTU, Length of CTUs

set NCTU = |NCTU|, Number of configured
CTUs for the SCG-GF-NOMA N t

CTU,SCG,
Number of the configured CG at each subframe
NCG.

Output: The set of actions for the number of CTUs
configuration At

CTU

1 Define set At
CTU;

2 Generate the initial index matrix: X ∈ C1×NCG with all
the elements equaling to 0;

3 Generate the max index matrix: Xmax ∈ C1×NCG with
all the elements equaling to NCTU;

4 The total searching steps Steps =
NCG∏
i=1

Xmax[i];

5 for j ← 1 to Steps do

6 if
NCG∑
i=1

NCTU[X [i]] = N t
CTU,SCG then

7 Put action At
CTU = {NCTU[X [i]], ∀i ∈ [1, NCG]}

into the action set At
CTU;

8 end
9 for k ← 1 to NCG do

10 X [−k]+ = 1;
11 if X [−k]<Xmax[−k] : break;
12 X [−k]% = Xmax[−k].
13 end
14 end

First, considering the CTU resource constraint
NCG∑
i=1

N t
CTU,i = N t

CTU,SCG as presented in (16), we could

obtain the action set At
CTU, which consists of the actions

At
CTU ∈ At

CTU with At
CTU = {N t

CTU,1, . . . , N
t
CTU,NCG

}.
To find all possible combinations of the number of CPUs for
multiple CG configurations with the CTU resource constraint,
we follow the Algorithm 1.

In addition, considering the starting slot constraint
N t

start,i < N t
start,i+1 < Nslot − 3, ∀i ∈ [1, NCG] in (18), we

could obtain the action setAt
start, which consists of the actions

At
start ∈ At

start with At
start = {N t

start,1, . . . , N
t
start,NCG

}.
Similarly, following the Algorithm 1, we can get all possible
combinations of the starting slots for multiple CG configu-
rations with the starting slot constraint. Different from the
CTU action set, in step 6, the constraint should be starting
slot constraint.

According to the latency constraint in (17), we have
N t

repe,i = Nslot − 3 − N t
start,i, ∀i,. Therefore, two

actions set At
CTU and At

start is enough to character-
ize the multiple CG configurations defined by parameters
CGt

i{N t
CTU,i, N

t
start,i, N

t
repe,i}.

3) Reward Function in the Q-Learning Model: As the opti-
mization goal is to maximize the number of the successfully
served UEs under the latency constraint, we define the reward
Rt+1 as

Rt+1 = N t
suc, (20)

where N t
suc is the number of UEs that have been successfully

detected and decoded under the latency constraint.

B. Cooperative Multi-Agent DDQN Approach

When the number of actions and states is small, the RL
algorithm can efficiently obtain the optimal policy. However,
when a large number of actions and states exist, which will
inevitably result in massive computation latency and severely
affect the performance of the RL algorithm. To address this
issue, DRL is introduced, where DRL can directly control the
behavior of each agent and solve complex decision-making
problems, through interaction with the environment [29], [30].
In addition, Multi-Agent RL (MA-RL) is introduced with cen-
tralized or decentralized rewards. In MA-RL with centralized
rewards, all agents receive a common (central) reward, while
in MA-RL with decentralized rewards, every agent obtains a
distinct reward [31]. However, in MA-RL with decentralized
rewards, all agents may compete with each other, i.e., agents
may act in a selfish behavior for requiring the highest reward
which may affect the global network performance. To convert
this selfishness into cooperative behavior, the same reward
may be assigned to all agents [32]. In this section, we apply
the Cooperative Multi-Agent technique based DDQN (CMA-
DDQN) to prevent the selfish behavior of agents.

The challenge of this approach is how to evaluate each
action according to the common reward function. For each
DQN agent, the received reward is corrupted by massive
noise, where its own effect on the reward is deeply hidden
in the effects of all other DQN agents. For instance, a positive
action can receive a mismatched low reward due to other
DQN agents’ negative actions. Fortunately, in our scenario,
all DQN agents are centralized at the BS, which means
that all DQN agents can have full information among each
other. The CMA-DDQN algorithm utilizes the experience
replay technique to enhance the convergence performance
of RL. When updating the CMA-DDQN algorithm, mini-
batch samples are selected randomly from the experience
memory as the input of the neural network, which breaks
down the correlation among the training samples. In addition,
through averaging the selected samples, the distribution of
training samples can be smoothed, which avoids the training
divergence. We define At

x as the action selected by the
xth agent. Each xth agent is responsible for updating the
value Q(St, At

x) of action At
x in state St, where the state

variable St = [At−1, U t−1, At−2, U t−2, . . . , At−Mo , U t−Mo ]
only includes information about the last Mo RTTs. All agents
receive the same reward Rt+1 at the end of each subframe.

The DDQN agents are trained in parallel. Each agent x
parameterizes the action-state value function Q(St, At

x) by
using a function Q(St, At

x, θx), where θx represents the
weights matrix of a multiple layers DNN with fully-connected
layers. The variables in the state St is fed in to the DNN as
the input; the Rectifier Linear Units (ReLUs) are adopted as
intermediate hidden layers; while the output layer is consisted
of linear units, which are in one-to-one correspondence with
all available actions in A. The online update of weights matrix
θx is carried out along each training episode by using DDQN
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Algorithm 2: CMA-DQN Based MCG-GF-NOMA
Uplink Resource Configuration
Input: : Action space A and Operation Iteration I.

1 Algorithm hyperparameters: learning rate λRMS ∈ (0, 1],
discount rate γ ∈ [0, 1), ε-greedy rate ε ∈ (0, 1], target
network update frequency Y ;

2 Initialization of replay memory M to capacity D, the
state-action value function Q(S, A, θ), the parameters of
primary Q-network θ, and the target Q-network θ̄;

3 for Iteration ← 1 to I do
4 Initialization of S1 by executing a random action A0

x;
5 for t ← 1 to T do
6 if pε < ε Then select a random action At

x from Ax

7 else select At
x = argmax

a∈Ax

Q(St, At
x, θx).

8 The BS broadcasts At
x and backlogged UEs

attempt communication in the tth subframe;
9 The BS observes state St+1, and calculate the

related reward Rt+1;
10 Store transition (St, At

x, Rt+1, St+1) in replay
memory Mx;

11 Sample random minibatch of transitions
(St, At

x, Rt+1, St+1) from replay memory Mx;
12 Perform a gradient descent step and update

parameters θx for Q(St, At
x, θx) using (22);

13 Update the parameter θ̄ = θ of the target
Q-network every Y steps.

14 end
15 end

[33]. Accordingly, learning takes place over multiple training
episodes, where each episode consists of several RTT periods.
In each RTT, the parameters θx of the Q-function approxima-
tor Q(St, At

x, θx) are updated using RMSProp optimizer [34]
as

θt+1
x = θt

x − λRMS∇LDDQN
x (θt

x) (21)

where λRMS ∈ (0, 1] is RMSProp learning rate,∇LDDQN
x (θt

x)
is the gradient of the loss function LDDQN

x (θt
x) used to

train the state-action value function. The gradient of the loss
function is defined as

∇LDDQN
x (θt

x) = ESj,Aj
x,Rj+1,Sj+1 [(Rj+1

+ γ max
a∈A

Q(Sj+1, Aj
x, θ̄

t
x)

−Q(Sj, Aj
x, θt

x))∇θx
Q(Sj , Aj

x, θt
x)], (22)

where the expectation is taken over the minibatch,
which are randomly selected from previous samples
(Sj , Aj

x, Sj+1, Rj+1) for j ∈ {t−Mr, . . . , t} with Mr being
the replay memory size [29]. When t − Mr is negative,
it represents to include samples from the previous episode.
Furthermore, θ̄t is the target Q-network in DDQN that is used
to estimate the future value of the Q-function in the update
rule, and θ̄

t
is periodically copied from the current value θt

and kept unchanged for several episodes.
Through calculating the expectation of the selected pre-

vious samples in minibatch and updating the θt by (21),

the DDQN value function Q(s, a, θ) can be obtained. The
detailed CMA-DDQN algorithm is presented in Algorithm 2.
We consider ε-greedy approach to balance exploitation and
exploration in the actor of the Q-Agent, where ε is a positive
real number and ε < 1. In each subframe t, the Q-agent
randomly generates a probability P t

ε to compare with ε. Then,
with the probability ε, the algorithm randomly chooses an
action from the remaining feasible actions to improve the
estimate of the non-greedy action’s value. With the probability
1 − ε, the algorithm exploits the current knowledge of the
Q-value table to choose the action that maximizes the expected
reward.

C. Computational Complexity

The approximate complexity of generating the set of actions
for X agents is O(XSstepNCG), where Sstep represents the
maximum iteration steps and NCG represents the element
number checking and correcting. The training complexity for
X agents, one minibatch of I episodes with T time-steps
until convergence results in computational complexity is of
order O(X2SstepNCGIT ) in training phase. The structures
of the value function approximator can also be specifically
designed for RL agents with sub-tasks of significantly different
complexity. However, there is no such requirement in our
problem, so it will not be considered. DNN is a better value
function approximator due to its efficiency and capability in
solving high complexity problems.

V. SIMULATION RESULTS

In this section, we examine the effectiveness of our proposed
MCG-GF-NOMA system with CMA-DDQN algorithm via
simulation. We adopt the standard network parameters listed
in Table II following [35], and hyperparameters for the DQN
learning algorithm are listed in Table III. Without loss of
generality, in the simulation, we focus on the mini-slots of
Nsym = 7 OFDM symbols for transmissions using 60 kHz
(μ = 2) SCS, which is in line with the main guidelines for
3GPP NR performance evaluations presented in [35].

All testing performance results are obtained by averaging
over 1000 episodes. The BS is located at the center of a
circular area with a 10 km radius, and the UEs are randomly
located within the cell. The DQN is set with two hidden layers,
each with 128 ReLU units. In the following, we present our
simulation results of multiple CG configurations in MCG-GF-
NOMA system.

Throughout epoch, each UE has a bursty traffic profile (i.e.,
the time limited Beta profile defined in (4) with parameters
(3, 4), (6, 8) or (30, 40)) that has a peak around the 400th
subframe. The resulting average number of newly generated
packets is shown in Fig. 5, where the dashed line represents
the low traffic (LOW) and the solid line represents the high
traffic (HIGH).

Fig. 6 compares the number of successfully served UEs for
MCG-GF-NOMA and SCG-GF-NOMA systems in low traffic
scenario with parameters Beta(3, 4) and Beta(30, 40), respec-
tively. Unless otherwise stated, we consider NCG = 5 for the
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TABLE II

SIMULATION PARAMETERS

TABLE III

LEARNING HYPERPARAMETERS

Fig. 5. The real-time traffic load.

MCG-GF-NOMA system. It is obvious that the MCG-GF-
NOMA can increase the successfully served UEs compared
with the SCG-GF-NOMA, especially for the high bursty
traffic peak (Beta(30, 40)), i.e., massive access simultaneously.

Fig. 6. Average number of successfully served users in low traffic scenario.

Fig. 7. Average number of successfully served users in high traffic scenario.

Particularly, at the peak traffic, the number of successfully
served UEs in the MCG-GF-NOMA system is circa two times
more than that in the SCG-GF-NOMA system. However, when
the bursty traffic is lower (Beta(3, 4)), this advantage of MCG
is not obvious. This indicates that the MCG solution can
ensure the massive access performance of GF-NOMA in a
massive URLLC scenario.

Fig. 7 compares the number of successfully served UEs for
MCG-GF-NOMA and SCG-GF-NOMA systems in high traffic
scenario with parameters Beta(3,4) and Beta(6,8), respectively.
We observe that at the peak traffic with parameter (3, 4),
the number of successfully served UEs in the MCG-GF-
NOMA system is circa four times more than that in the SCG-
GF-NOMA system, while at the peak traffic with parameter
(6, 8), the number of successfully served UEs in the MCG-
GF-NOMA system is circa seven times more than that in
the SCG-GF-NOMA system. This is in line with Fig. 6 that
the MCG-GF-NOMA outperform the SCG-GF-NOMA for
massive access scenario. It should be noted that the number
of successfully served UEs for MCG-GF-NOMA with Beta
(6, 8) decreases slightly at the peak traffic compared with that
for MCG-GF-NOMA with Beta (3, 4). It indicates that with
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Fig. 8. Average latency of successfully served users.

Fig. 9. Average number of idle CTUs.

ever-increasing traffic, the ability of MCG-GF-NOMA will be
limited, more efficient solution should be designed.

Fig. 8 compares the average latency of successfully served
UEs in MCG-GF-NOMA and SCG-GF-NOMA systems with
both high traffic and low scenarios with parameters Beta(3,
4), respectively. It is obvious that the MCG-GF-NOMA can
decrease the average latency of successfully served UEs com-
pared to the SCG-GF-NOMA, for both the high traffic and low
traffic scenarios. In particular, the MCG-GF-NOMA system
could almost decrease the latency by half compared with that
in the SCG-GF-NOMA system. This indicates that the MCG
solution can ensure the low latency performance of GF-NOMA
in a massive URLLC scenario.

Fig. 9 and Fig. 10 compare the average number of idle
and collision CTUs in MCG-GF-NOMA and SCG-GF-NOMA
systems with both high traffic and low traffic scenarios
with parameters Beta(3, 4), respectively. Combining with
Fig. 6-Fig. 8, we observe that the multiple CGs solution can
obtain better reliability and latency performance of MCG-
GF-NOMA only by using smaller CTU resources than the
SCG-GF-NOMA with the single CG, especially for the high
traffic scenario. This is due to the fact that the MCG solution

Fig. 10. Average number of collision CTUs.

Fig. 11. Average number of successfully served users in MCG-GF-NOMA
with different numbers of configured-grants NCG.

mitigates the heavy traffic backlog in the SCG-GF-NOMA
system, where multiple UEs are active after the starting slot
offset of one CG will wait for the next CG period to transmit
the packet. Consequently, the collision events are mitigated in
the MCG-GF-NOMA system.

Fig. 11 and Fig. 12 compare the average number of suc-
cessfully served users and the average latency of successfully
served users in the MCG-GF-NOMA system with high traffic
for different numbers of CGs NCG, respectively. Unless oth-
erwise stated, we consider bursty traffic parameter Beta(3, 4)
for the MCG-GF-NOMA system. We observe that the average
number of successfully served users increases, whereas the
average latency of successfully served users decreases, with
increasing the numbers of CGs NCG. The increased degree
of the average number of successfully served users and the
decreased degree of the average latency of successfully served
users is largest at the peak traffic around the 400th subframe.
This indicates that more CGs can improve the massive access
performance of GF-NOMA in high traffic regions, which is in
line of the descriptions of MCG-GF-NOMA in Section I.A.
The MCG-GF-NOMA system could mitigate the collision
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Fig. 12. Average latency of successfully served users in MCG-GF-NOMA
with different numbers of configured-grants NCG.

Fig. 13. Average received reward.

events when multiple UEs are active and waiting for the CG
period to transmit the packet. It should be noted that both
the increased degree of the average number of successfully
served users and the decreased degree of the average latency of
successfully served users decrease with increasing the numbers
of CGs NCG.

In Fig. 13, we show the system convergence process of
the proposed CMA-DDQN aided MCG-GF-NOMA schemes
by plotting the average reward. It can be intuitively seen that
the proposed framework has a fast convergence speed and the
episode required for system convergence is very small.

Fig. 14 and Fig. 15 plot the action index of the action
ACTU in the action set ACTU and the action Astart in the
action set Astart for MCG-GF-NOMA systems in heavy
traffic scenario with NCG = 2, respectively. According to
the Algorithm 1, we could obtain the action set ACTU =
{[8, 56], [16, 48], [24, 40], [32, 32], [40, 24], [48, 16], [56, 8]}
as well as the action set Astart =
{[0, 1], [0, 2], [0, 3], [0, 4], [1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]},
which are sorted by the element in the matrix. In Fig. 14,
we observe that the agent learns to adopt the action with a

Fig. 14. Action index of the action ACTU in the action set ACTU for
MCG-GF-NOMA with NCG = 2.

Fig. 15. Action index of the action Astart in the action set Astart for
MCG-GF-NOMA with NCG = 2.

smaller number of CTUs for CG 1 and a larger number of
CTUs for CG 2 around the peak traffic, e.g., ACTU = [8, 56].
This is because the agent in the MCG-GF-NOMA scheme
learns to sacrifice the successful transmission in CG 1 to
alleviate the traffic congestion in CG 2 for heavy traffic
regions to obtain a long-term reward. We also observe that
the agent learns to adopt the action with the same number
of CTUs for CG 1 and CG 2 around the low traffic, e.g.,
ACTU = [32, 32]. This is because in a low traffic region
with less traffic congestion the agent in the MCG-GF-NOMA
scheme learns to guarantee the successful transmission in
both the CG 1 and CG 2. Similarly, in Fig. 15, the agent
learns to adopt the action with an earlier stating slot for
CG 2 around the peak traffic, e.g., Astart = [0, 1]. This can
guarantee the larger repetition value in CG2 to get high
reliability.

VI. CONCLUSION

In this paper, we proposed a novel MCG-GF-NOMA
learning framework for attaining the long-term successfully
served UEs under the latency constraint in mURLLC service,
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where bursty traffic of UEs was considered. We first designed
and modeled the MCG-GF-NOMA system, where we charac-
terize each CG using the parameters including the number
of CTUs, the starting slot of each CG within a subframe,
and the number of repetitions of each CG. We then charac-
terized and analyzed the latency and reliability performances
for each CG. We formulated the MCG-GF-NOMA resources
configuration problem taking into account three constraints:
1) the CTU resource constraint is set to compare the MCG-
GF-NOMA system with the SCG-GF-NOMA scheme; 2) the
latency constraint is set to satisfy the latency requirement;
and 3) the starting slot constraint is set to support various
UL packet arrival times. Finally, we proposed a CMA-DDQN
algorithm to balance the allocations of resources among MCGs
so as to maximize the number of successful transmissions
under the latency constraint, which breaks down the selection
of high-dimensional parameters into multiple parallel sub-
tasks with a number of DDQN agents cooperatively being
trained to produce each parameter. Our results have shown
that the MCG-GF-NOMA framework can improve the low
latency and high reliability performances in a massive URLLC
scenario. In detail, the number of successfully served UEs
in the MCG-GF-NOMA system is circa four times more
than that in the SCG-GF-NOMA system, and the latency
of successfully served UEs in the MCG-GF-NOMA system
is circa half of that in the SCG-GF-NOMA system in high
traffic scenario. Our work will help to support the 3GPP
evolution in terms of 1) the establishment of the theoretical
foundation of MCG transmission procedure; and 2) PHY
and MAC parameters configuration setup, evaluation, and
optimization. Our proposed learning framework defined the
observations, actions, and rewards to maximize long-term suc-
cessfully served UEsunder the latency constrain, which can be
standardized as the collected parameters from the environment.
From the perspective of performance improvement, determin-
ing the retransmission or not can be optimized in the future by
considering both the different latency constraints and the future
traffic congestion. Furthermore, a promising future direction is
to cooperatively optimize networks along with the UEs’ key
performance indicators (KPIs), such as power consumption
and transmission delay. Such multi-objective optimization is
quite challenging and should be addressed in the future.
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